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Abstract  

Prey refuge behavior is the key to sustaining the predator population. The presented model is a prey-predator system 

assuming logistic prey growth and prey refuge. The author established the existence and the local  stability of the 

equilibriums. The system is stable for no or moderate prey refuge and collapses for its highest value. Biologically, 

providing a suitable predating environment to predator helps to sustain the predator population. 
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1. Introduction 

The evolution of prey and predator interactions is a captivating subject in ecology. While numerous studies focus 

predominantly on ecological or evolutionary dynamics, real-world prey-predator systems often simultaneously 

encompass both processes. Experimental research has demonstrated that ecological and evolutionary mechanisms are 

intricately intertwined, presenting significant challenges in identifying and analyzing their complex interplay within 

natural systems. Eco-evolution is the reciprocal interaction between ecological dynamics and evolutionary changes, 

where each influence and shapes the other over time. Theoretically, theoretical models are crucial in facilitating 

analysis and advancing research [1]. Theoretical models of predator-prey dynamics consistently illustrate that the 

population sizes of predators and prey exhibit regular and periodic oscillations over time. Typically, predator 

population density lags behind that of prey. An increase in prey density promotes a corresponding rise in predator 

population due to the ample prey availability for predation. However, as prey density subsequently declines, the 

predator population also diminishes. A reduced predator density decreases the predation rate, facilitating the recovery 

and subsequent increase of the prey population. As a result, both predator and prey species experience continual 

environmental fluctuations on short temporal scales. From an evolutionary standpoint, these dynamics induce periodic 

shifts in selective pressures between predator and prey, thereby driving the evolution of adaptive prey defense 

mechanisms. This study investigates an eco-evolutionary model of prey-predator interaction employing the prey 

escape rate as an evolutionary parameter to evaluate its impact on ecological dynamics. Warif B. Bassim studied the 

prey-predator ecosystem from both the prey and predator perspectives and found a hide-and-evade strategy that 

follows prey, prevents them from predation, and balances the ecosystem [2]. Aposematism is an adequate strategy 

prey uses to defend themselves and signal potential threats. By employing aposematism, prey can reduce the likelihood 

of predation, thereby increasing their escape rate [3]. The topic of prey and predator coevolution is highly 

sophisticated, involving the dynamic adaptation of strategies by both prey and predators in response to their 

compatibility and prevailing environmental conditions [4]. In this mathematical model, the author investigated the 

oscillatory behavior of populations using partial differential equations. The model examines the defense traits 

developed by the prey population, which significantly enhance their chances of survival. These defense traits, favored 

within the prey population, contribute to increased survivability while maintaining a low energy cost. Prey defend 

themselves from predation by developing various defense mechanisms, such as behavioral adaptations and the release 

of chemical defenses. These strategies are often unfavorable for predators and, in some cases, may lead to their death, 

potentially destabilizing the ecosystem [5].  

The proposed model encapsulates a prey-predator model incorporating prey refuge. Section 2 contains the    

development of the mathematical model. Section 3 presents equilibrium classification. Section 4 explores stability 

analysis of the model at various point. Section 5 pursue numerical simulation of the proposed model. Finally, section 

6 concludes results.  

2. Development of the Mathematical Model 

The proposed model considers a prey N_p  and predator species  N_c. The prey population is growing according to  

logistic rule. We assume that predating is predating on prey with linear function response and conversing the predator 
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population. Further, some preys are refuging predation using their aposematic behavior. Considering all above 

assumption the proposed model is: 

 

                                                                           
dNc

dt
= 𝑟𝑁𝑝 (1 −

𝑁𝑝

𝑘
)  − 𝑎𝑁𝑝𝑁𝑐(1 − 𝑒)                  (1) 

   

                                                                            
dNc

dt
= baNpNc(1 − e) − mNc 

       The parameters and functions are defined in the following table: 

 

No. Parameters                Definition 
1 Np Population of preys 
2 Nc Population of predators 
3 r Reproduction rate of prey 
4 k Carrying capacity of prey 
5 a Predation rate (prey captured per predator per unit time) 
6 m Mortality rate of predators 
7 b Conversion efficiency of predators (prey to predator biomass) 
8 e Prey escape rate (evolutionary parameter) 

 

Prey escape rate 𝑒 ∈ [0,1],  represents the fraction of prey escaping predation using some evolved traits (like speed, 

camouflage) during the process of predation.  𝑒 = 0 means no prey escape, 𝑒 = 1 means all prey escape. 

3. Classification of Equilibrium Points 

            The Equilibrium points are: (a) Trivial equilibrium (0,0) (b) Axial equilibrium point: (𝑁𝑝, 0) (c) Coexistence 

      equilibrium point(𝑁𝑝 , 𝑁𝑐): Where, 𝑁𝑝 =
𝑚

𝑏𝑎(1−𝑒)
 and 𝑁𝑐 =

𝑟

𝑎(1−𝑒)
(1 −

𝑚

𝑏𝑎(1−𝑒)𝑘
). 

 

4. Local Stability Analysis 

        The Jacobian of system (1) is as follows:     

 

                                                                                     𝐽 = (
𝑢11 𝑢12

𝑢21 𝑢22
).                                               (2) 

  

       Where  𝑢11 = 𝑟 (1 −
𝑁𝑝

𝑘
) −  𝑟

𝑁𝑝

𝑘
  − 𝑎𝑁𝑐(1 − 𝑒) , 𝑢12 = aNp(1 − e),   𝑢21 = 𝑏𝑎𝑁𝑐 (1 − 𝑒), 𝑢22 = 𝑏𝑎𝑁𝑝(1 −

𝑒) − 𝑚. 
 

4.1. Trivial Equilibrium: At trivial equilibrium (0,0) the Jacobian (2) becomes 

𝐽 = (
𝑟 0
0 −𝑚

) 

             The eigen values are  𝜆1 = 𝑟, 𝜆2 = −𝑚. Since  𝜆1 = 𝑟 > 0, the trivial equilibrium point is unstable.  

 

 4.2 Axial Equilibrium: At axial equilibrium (𝑁𝑝 , 0)  the Jacobian (2) becomes 

 

𝐽 = (
𝑟 [1 −

2𝑚

𝑏𝑎(1−𝑒)𝑘
] −

𝑚

𝑏

0 0
)                                                           (3)                                                                                                                                                  

            The characteristic equation for the Jacobian (3) is: 

 

( 𝑟 [1 −
2𝑁𝑝

𝑘
] − 𝜆)( −𝜆) = 0. 

 

             The eigen values are, 
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𝜆1 = 𝑟 [1 −
2𝑚

𝑏𝑎(1 − 𝑒)𝑘
] , 𝜆2 =  0. 

Since 0<e<1 therefore λ_1is negative under the condition 2m>ba(1-e)k and λ_2=0, indicates that stability analysis 

is inconclusive and the equilibrium might be neutrally stable or undergo a bifurcation. Hence axial  equilibrium is 

unstable.  

  4.3 Coexistence Equilibrium: The Jacobian of the system (1) at coexistence equilibrium (𝑁𝑝, 𝑁𝑐) is  

𝐽 = (

−𝑚𝑟

𝑏𝑎(1 − 𝑒)𝑘
−

𝑚

𝑏

𝑏𝑟 (1 −
𝑚

𝑏𝑎(1 − 𝑒)𝑘
) 0

)                                                                            (4)                     

       The characteristic equation is for the Jacobean (4) is: 

 

𝜆2 +
𝑚𝑟

𝑏𝑎(1 − 𝑒)𝑘
𝜆 + 𝑚𝑟 (1 −

𝑚

𝑏𝑎(1 − 𝑒)𝑘
) = 0. 

        The eigen values are, 

  

𝜆1 =
1

2
[

−𝑚𝑟

𝑏𝑎(1 − 𝑒)𝑘
− √

𝑚2𝑟2

𝑏2 𝑎2(1 − 𝑒)2𝑘2 − 4𝑚𝑟 (1 −
𝑚

𝑏𝑎(1 − 𝑒)𝑘
)

2

] 

 

𝜆2 =
1

2
[

−𝑚𝑟

𝑏𝑎(1 − 𝑒)𝑘
+ √

𝑚2𝑟2

𝑏2 𝑎2(1 − 𝑒)2𝑘2
− 4𝑚𝑟 (1 −

𝑚

𝑏𝑎(1 − 𝑒)𝑘
)

2

] 

Since 0 < 𝑒 < 1 therefore 𝜆1 is always negative. And 𝜆2 is negative under the condition 𝑚 > 𝑏𝑎(1 − 𝑒)𝑘. Hence 

coexistence equilibrium is stable under condition 𝑚 > 𝑏𝑎(1 − 𝑒)𝑘. 
 

5. Numerical Simulation 

The proposed model is a pre-predator system that considers the logistic prey growth rate and prey refuge coefficient. 

The author also simulates the model (1) with the following set of biologically realistic parameters:  

 

 r = 4.5, k=50, a = 0.35, a = 0.05, b = 0.51, m = 0.1, e=0.5               (5) 

 

The solution trajectories of the system (1) are shown at interior state showing local stability Fig. (1). Further, increasing 

prey escape rate to 𝑒 =1 the predator population dies and the system reaches to axial state r Fig. 2. The impact of prey 

refuge on the predator population is shown in Fig. 3. The predator population is highest at prey refuge rate 𝑒 = 0.8. 
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Fig.1: Local Stability of the Coexistence equilibrium for the parameter set (5) 

 

Fig.2 Local Stability of the Axial equilibrium for the parameter set (5) except 𝑒 = 1 
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Fig.3 Effect of prey refuge parameter on the praetor population. 

 

6. Conclusions 

This section presents the results of the proposed system (1). The author proved analytically the presence of the 

equilibrium and their local stability. The system (1) is locally stable when there is no and moderate prey refuge. When 

the prey refuge reaches its highest value, predators are drastically decline and disappear from the system.  
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