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Abstract  

This study investigates a delayed non-autonomous eco-epidemiological predator-prey model incorporating predator 

infection and prey refuge within a periodically fluctuating environment. The model considers an incubation delay in 

infection among predators, along with the impact of healthy predator crowding. Theoretical analysis establishes 

conditions for the existence, boundedness, and uniform persistence of the system's solutions. Through numerical 

simulations, we examine how varying incubation delays influence system dynamics, revealing a transition from 

periodic stability to bifurcation and ultimately chaos. Additionally, the effect of prey refuge is explored, demonstrating 

that moderate prey refuge stabilizes the system, while excessive refuge disrupts equilibrium and induces chaotic 

behavior. These findings highlight the complex interplay between time delays, periodic environments, and ecological 

stability, offering insights into predator-prey interactions in fluctuating ecosystems. 

Keywords: Predator-prey, Incubation delay, Chaos, Periodic environment. 

1. Introduction 

Mathematical modeling has been instrumental in understanding the complex interactions within biological and 

ecological systems. Predator-prey models, in particular, have been extensively used to analyze population dynamics, 

species interactions, and ecological stability [1]. The inclusion of time delays in such models is crucial, as many 

biological interactions are not instantaneous [2]. In predator-prey dynamics, delays can arise due to factors such as 

gestation periods, maturation time, and handling time of prey by predators [3]. 

One significant ecological factor influencing predator-prey interactions is the presence of prey refuge. Prey refuge 

refers to a strategy where a fraction of the prey population is shielded from predation, either by hiding in physical 

shelters or by behavioural adaptations [4]. The impact of prey refuge on predator-prey models has been widely studied 

[5, 6, 7, 8], demonstrating that it can stabilize population oscillations [9] and prevent predator extinction [10, 11]. 

However, the effect of prey refuge in a delayed environment with periodic fluctuations remains an area that requires 

further exploration. The role of delays in predator-prey models has been extensively examined within the field of 

mathematical ecology, with early studies, such as Gopalswamy [12] , exploring how time delays influence the stability 

and oscillatory behavior of population dynamics. In epidemiological contexts, the impact of incubation delays on 

disease spread has been analyzed by Diekmann and Heesterbeek [13], offering valuable insights into how such delays 

affect population dynamics. The concept of prey refuge itself has been studied in numerous predator -prey models. 

Huang et al. [14] for instance, investigated its impact on the permanence and global stability of delayed Lotka-Volterra 

systems, revealing that prey refuge plays a crucial role in mitigating predator-prey oscillations and stabilizing 

populations.  

       Recent advancements have incorporated periodic environments into predator-prey models, acknowledging the 

critical influence of seasonal and environmental fluctuations on species interactions [15]. Geritz and Kisdi [16] 

examined evolutionary dynamics in predator-prey interactions under fluctuating environmental conditions, suggesting 

that evolutionary adaptations in predator and prey traits can significantly alter population dynamics The impact of fear 

in a delayed predator-prey system with prey refuge in the presence of additional food was studied by Wang et al [17], 

highlighting how fear-induced behaviors can influence population stability. Time-delayed predator-prey interactions 

with the benefit of antipredation responses in the presence of refuge is studied by [18], providing insights into how 

prey strategies can affect predator-prey dynamics. Ruan and Wei (2001) examined Hopf bifurcation phenomena in 

delayed ecological and epidemiological models, revealing that delay- induced bifurcations could shift system 

dynamics from stability to oscillatory regimes. Santra et al.  [19] investigated time-delayed predator-prey interactions 
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with the benefit of anti-predation responses in the presence of refuge. Abbasi et al. [20] explored multiple periodicities 

in a predator-prey model with prey refuge, offering a deeper understanding of the complex periodic behaviors that can 

arise in such systems. These recent contributions underscore the evolving nature of research in this field and the 

importance of considering various factors, including fear effects, anti-predation responses, and complex periodic 

behaviors, in predator-prey dynamics. Despite these advancements, the combined effect of prey refuge, time delays, 

and periodic environments remain underexplored. Our study builds upon previous research by incorporating these 

factors into a unified mathematical framework. By establishing conditions for existence, uniqueness, and uniform 

persistence, we provide a comprehensive analysis of how delayed predation and disease incubation influence predator-

prey interactions in a fluctuating environment.  

2. Model Formulation  

   The model is described by the following system of nonlinear differential equations: 

          
𝑑𝑥1

𝑑𝑡
= 𝑟(𝑡)𝑥1(𝑡) − 𝛼1(𝑡)(1 − 𝑚(𝑡)𝑥3(𝑡))𝑥1(𝑡)𝑥3(𝑡) − 𝜂(𝑡)𝑥1(𝑡)𝑥2(𝑡) − 𝑑1(𝑡)𝑥1(𝑡) 

 

                
𝑑𝑥2

𝑑𝑡
= 𝜂(𝑡)𝑥1(𝑡 − 𝜏)𝑥2(𝑡 − 𝜏) − 𝛼2(𝑡)𝑥2(𝑡)𝑥3(𝑡) − 𝑑2(𝑡)𝑥2(𝑡)                 (1)         

 

        
𝑑𝑥3

𝑑𝑡
= 𝑒1(𝑡)𝛼1(𝑡)(1 − 𝑚(𝑡)𝑥3(𝑡))𝑥1(𝑡)𝑥3(𝑡) + 𝑒2(𝑡)𝛼2(𝑡)𝑥2(𝑡)𝑥3(𝑡) − 𝑑3(𝑡)𝑥3(𝑡) 

 

The present section contains a delayed non-autonomous prey-predator model incorporating Healhty Prey, Infected 

Prey, and Predator with population densities 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡), respectively. All three populations lie within the 

considered region for time 𝑡 > 0. The parameter description of the proposed model is: 𝑟 is the logistic growth rate of 

the prey species, and 𝛼1 is the predation rate of healthy prey and 𝛼2 is predation rate of infected prey. Here, we 

consider 𝜂 as disease transmission rate and 𝜏 is the incubation delay. The conversion coefficient of healthy prey is 𝑒1 

and that of infected prey is 𝑒2 rate of prey. The parameter 𝑚 denotes healthy prey refuge coefficient. Finally, 𝑑1 , 𝑑2 

and 𝑑3 are the death rates of healthy prey, infected prey and predator. All the earlier assumptions lead to the underlying 

non-autonomous model. 

     Theorem 1: The system possesses a unique solution over the interval [−𝜏, ∞) for the given initial conditions:  

𝑥1(𝜙) = 𝜓1(𝜙),    𝑥2(𝜙) = 𝜓2(𝜙),    𝑥3(𝜙) = 𝜓3(𝜙),    𝜙 ∈ [−𝜏, 0], 

where 𝜓1(𝜙), 𝜓2(𝜙), 𝜓3(𝜙) are continuous and non-negative initial functions. 𝚥𝑖 (𝜑) ≥ 0, 𝜑 ∈ [−𝜏, 0], 𝑖 = 1,2,3.
                                        (2) 

3. Preliminaries  

     The following subsections demonstrate fundamental results such as the permanence, existence, and uniqueness of 

the solution to model (1). 

3.1. Existence and uniqueness of the solution  

      Theorem 2: The system (1) possesses a unique solution over the interval [−𝜏, ∞) for the initial conditions (2).   

      Proof. We know that the right-hand side of the system (1) is locally Lipschitzian and completely continuous 

over 𝐶, has a unique solution (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) of model (1) satisfying initial conditions (2) on [0, 𝛼) where 

   0 < 𝛼 ≤ +∞ .  Now, referring to the first equation of model (1), we can observe that:  

 𝑥1(𝑡) = 𝑥1(0)   𝑒𝑥𝑝 ∫ [𝑟(𝜐) − 𝛼(𝜐)(1 − 𝑚𝑥3(𝜐))𝑥3(𝜐) − 𝜂(𝜐)𝑥2(𝜐) − 𝑑1(𝜐)]
𝑡

0
𝑑𝜐 > 0   ∀ 𝑡 ≥ 0. 

       Also, using model (1)’s third equation, we have  

 𝑥3(𝑡) = 𝑥3(0)   𝑒𝑥𝑝 ∫ [𝑒1(𝜐)𝛼(𝜐)(1 − 𝑚𝑥3(𝜐))𝑥1(𝜐) + 𝑒2(𝜐)𝛼2(𝜐)𝑥2(𝜐) − 𝑑3(𝜐)]
𝑡

0
𝑑𝜐 > 0  ∀  𝑡 ≥ 0. 

  Next, we need to show that 𝑥2(𝑡) > 0   ∀   𝑡 ≥ 0. Suppose that 𝑥2(𝑡) ≤ 0    ∀    𝑡 ≥ 0, then ∃ a 𝑡1 > 0 such that  

  𝑥2(𝑡1) = 0 and 𝑥2(𝑡) ≥ 0    ∀𝑡 ∈ [−𝜏, 𝑡1]. Moreover, 

𝑑𝑥2(𝑡)

𝑑𝑡
≥ −𝛼2(𝑡)𝑥2(𝑡)𝑥3(𝑡) − 𝑐(𝑡)𝑥2(𝑡)                  ∀𝑡 ∈ [0, 𝑡1]                           (2) 
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                                 ⇒ 𝑥2(𝑡) ≥ 𝑥2(0)   𝑒𝑥𝑝 ∫ [−𝛼2(𝜐)𝑥3(𝜐)−2(𝜐)]𝑑𝜐
𝑡

0
> 0      ∀𝑡 ∈ [0, 𝑡1]. 

This contradicts our initial supposition. Thus, 𝑥2(𝑡) > 0,   ∀      𝑡 ≥ 0.  

3.2 Permanence 

     This subsection explores the enduring nature of the system (1), using the initial conditions (2). We shall 

demonstrate how the system will exhibit uniform persistence under specific conditions. Moreover, all integrants of 

system (1) will survive over a long time under certain conditions. For a bounded and continuous function, 𝑝(𝑡) is 

specified on the interval. [0, +∞), let 𝑝𝑙 = 𝑖𝑛𝑓𝑡 ≤0𝑝(𝑡) and 𝑝𝑢 = 𝑠𝑢𝑝𝑡≥0𝑝(𝑡).  

       Definition 3.1 If 𝑎𝑖 and 𝑏𝑖, 𝑖 = 1,2,3, are positive constants that ensure: 

𝑎1 ≤ 𝑙𝑖𝑚𝑡→∞𝑖𝑛𝑓 𝑥1(𝑡) ≤ 𝑙𝑖𝑚𝑡→∞ 𝑠𝑢𝑝 𝑠𝑢𝑝  𝑥1 (𝑡) ≤ 𝑏1, 
𝑎2 ≤ 𝑙𝑖𝑚𝑡→∞𝑖𝑛𝑓 𝑥2(𝑡) ≤ 𝑙𝑖𝑚𝑡→∞𝑠𝑢𝑝 𝑥2(𝑡) ≤ 𝑏2, 
𝑎3 ≤ 𝑙𝑖𝑚𝑡→∞𝑖𝑛𝑓𝑥3(𝑡) ≤ 𝑙𝑖𝑚𝑡→∞𝑠𝑢𝑝𝑥3(𝑡) ≤ 𝑏3, 

holds for each solution (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) of model (1) satisfying initial conditions (2), then model described by 

(1) is considered uniformly persistent.  

     Let us consider the system [21],  

 𝑦̇ = 𝑝𝑦(𝑡 − 𝜏) − 𝑞𝑦(𝑡) − 𝑠𝑦2(𝑡), 

       where 𝑝, 𝑞, 𝑠, 𝜏 > 0; 𝑦(𝑡) > 0 for −𝜏 ≤ 𝑡 ≤ 0. Then, we have  

 𝑙𝑖𝑚
𝑡→∞

𝑦(𝑡) = {

𝑝−𝑞

𝑠
  𝑝 > 𝑞

0     𝑝 < 𝑞
  . 

Theorem 3: Assume that 𝑋(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) represent solution of the model (1) satisfying initial 

conditions (2). Consider that model (1) adheres to the following conditions:  

 
𝜂2

𝑙

(𝛾1−𝜆)𝑢 < 𝐾∗ = 𝑚𝑎𝑥 {(
𝑟𝑢

𝑑1
𝑙 ) , (

𝑟𝑢

𝑑1
𝑙 ) (

𝜂𝑢

𝑑2
𝑙 )}                                    (3) 

       then ∃ a 𝛶3 > 0 so that  

 𝑥1(𝑡), 𝑥2(𝑡) < 𝐾3, 𝑥3(𝑡) ≤ 𝐾4     ∀𝑡 ≥ 𝛶3 ,                                    (4) 

where 𝐾3 > 𝐾∗ and 𝐾4 >
(𝛾1−𝜆)𝑢𝐾∗−𝜂2

𝑙

𝑑2
𝑙 . 

       Proo: Let 𝐾1 > (
𝑟𝑢

𝑑1
𝑙 ). Considering the system (1)’s first equation, we have 

                                                           𝑥̇1(𝑡) ≤ 𝑥1(𝑡)[𝑟(𝑡) − 𝑑1(𝑡)] ≤ 𝑥1(𝑡)[𝑟𝑢 − 𝑑1
𝑙 ]. 

       Thus, if 𝑥1(0) ≤ 𝐾1, then 𝑥1(𝑡) ≤ 𝐾1,    ∀𝑡 ≥ 0. If  𝑆(0) > 𝐾1 and let −𝛽1 = 𝐾1(𝑟𝑢 − 𝑑1
𝑙 ), 𝛽1 > 0, then ∃ an ∈

> 0, 

       such that if 𝑡 ∈ [0, ∈), 𝑥1(𝑡) > 𝐾1 and we have 𝑥̇1(𝑡) < −𝛽1 < 0. Therefore, ∃ a 𝛶1 > 0 and 𝛶3 > 0 such that  

𝑥1(𝑡) ≤ 𝐾1 and 𝑥2(𝑡) ≤ 𝐾4   ∀𝑡 ≥ 𝛶1, 𝛶3 . 

Using system (2)’s third equation, we get  

 𝑥̇2(𝑡) ≤ 𝜂𝑢(𝑡)𝐾1𝑥2(𝑡 − 𝜏)−𝑑2
𝑙 𝑥2(𝑡),   𝑡 ≥ 𝛶1 + 𝜏.                                    (5) 

       We deduce from Lemma (4.2) that ∃ a 𝛶2 ≥ 𝛶1 + 𝜏 so that 𝑥2(𝑡) ≤ 𝐾2 ,   ∀𝑡 ≥ 𝛶2 , where 𝐾2 >
𝜂𝑢 𝐾1

𝑑2
  

        It is feasible to select 𝐾1 sufficiently in proximity to (
𝑟𝑢

𝑑1
𝑙 ). Hence, 𝑥1(𝑡), 𝑥2(𝑡) ≤ 𝐾3 , where 

𝐾3 > 𝐾∗ = 𝑚𝑎𝑥 {(
𝑟𝑢

𝑑1
𝑙

), (
𝑟𝑢

𝑑1
𝑙
) (

𝜂

 𝑢
𝑑2

𝑙 )},    ∀𝑡 ≥ 𝛶2 . 

         Using system (2)’s third equation, we obtain  
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 𝑥̇3(𝑡) ≤ 𝑥3(𝑡)[(𝑒1𝛼1)𝑢(1 − 𝑚)𝐾3 + (𝑒2𝛼2)𝑙 − 𝑑3
𝑙 ],   ∀𝑡 ≥ 𝛶3 . 

         Therefore, ∃ a 𝛶3 > 0 so that 𝑥3(𝑡) ≤ 𝐾4    ∀𝑡 ≥ 𝛶3 , where 𝐾4 >
((𝑒1𝛼1)𝑢(1−𝑚)𝐾3+(𝑒2𝛼2)𝑙

𝑑3
𝑙 , since 𝐾3 can be 

chosen sufficiently close to 𝐾∗ .  
 

        Theorem 4: The system (1), considering initial condition (2), exhibits uniform persistence when the  

        subsequent condition is satisfied:   

𝜂2
𝑙

(𝛾1−𝜆)2 < 𝐾∗ = 𝑚𝑎𝑥 {(
𝑏𝑢

𝑑1
𝑙 ) , (

𝑏𝑢

𝑑1
𝑙 ) (

𝛾2
𝑢

𝜂3
𝑙 )}  < 𝑚𝑖𝑛{

𝑑3
𝑙 𝑟𝑙 +𝛼1

𝑢 𝑒2
𝑙 −

(𝑑1
𝑢+𝑑3

𝑢𝑒2
𝑢)

𝑒1
𝑙 𝛼1

𝑙 (1+𝑚)𝑙

(𝑑2+𝜂)𝑢𝑑3
𝑙 +𝛼1

𝑢 𝑒1
𝑢𝛼1

𝑢 (1−𝑚)𝑢 ,                         (7)           

   Proof. Assume that 𝑋(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) is a solution of the model (1) satisfying initial conditions (2),  

with the help of Theorem 4.2, we have  

 𝑥̇1(𝑡) ≥ 𝑥1(𝑡)[(𝑟 𝑙 − 𝛼1(1 − 𝑚𝑀3)𝑀3 − 𝜂𝑢 𝑀2 − 𝑑1] − 𝑑1)𝑢𝐾3 + 𝛼1
𝑢𝐾4) − 𝑑1

𝑢],    ∀𝑡 ≥ 𝛶3. 

           If 𝑥1(𝑟𝑙 − 𝛼1(1 − 𝑚𝑀4)𝑢𝑀4 − 𝜂𝑢𝑀3) − 𝑑1 > 0, then we can choose 𝑚1 such that  

 0 < 𝑚1 <
[(𝑟𝑙 −𝛼1(1−𝑚𝑀4)𝑢𝑀4−𝜂𝑢 𝑀3 )]

𝑑1
𝑢 ⇒ (𝑟𝑙 − 𝛼1(1 − 𝑚𝑀4)𝑢𝑀4 − 𝜂𝑢𝑀3) − 𝑑1

𝑢𝑚1 > 0. 

    If 𝑥1(𝛶3) ≥ 𝑚1, then 𝑥1(𝑡) ≥ 𝑚1  ∀𝑡 ≥ 𝛶3. If 𝑥1(𝛶3) < 𝑚1, and let 𝜇1 = 𝑥1(𝛶3)[  𝛼1(1 − 𝑚𝑀4)𝑢𝑀4] − 𝜂𝑢 𝑀3 >
    0, then ∃ an ∈> 0, such that 𝑥1(𝑡) < 𝑚1, and 𝑥̇1 > 𝜇1 > 0,   ∀𝑡 ∈ [𝛶3 , 𝛶3+∈). Therefore, ∃ a 𝛶4 > 𝛶3 > 0, such  

    that 𝑥1(𝑡) ≥ 𝑚1    ∀𝑡 ≥ 𝛶4 . 

          Using system (1)’s third equation, we obtain  

                                       𝑥̇2(𝑡) ≥ 𝜂𝑥1(𝑡 − 𝜏)𝑥2(𝑡 − 𝜏) − 𝛼2𝑥2(𝑡)𝑥3(𝑡) − 𝑑2𝑥2(𝑡).                                 (8) 

 ≥ 𝜂𝑙𝑚1𝑥2(𝑡 − 𝜏) − (𝛼2
𝑢𝑀3 + 𝑑2)𝑥2(𝑡)                                                      (9) 

     ≥ 𝜂𝑙𝑚1𝑥2(𝑡 − 𝜏) −∈2 𝑥2(𝑡) − (𝛼2
𝑢𝑀3 + 𝑑2)𝑥2(𝑡)   ∀𝑡 ≥ 𝛶4 + 𝜏,      (10) 

 where ∈2 represents any non-negative real number. Suppose that 𝜂𝑙 𝑚1 > 𝛼2
𝑢𝑀3 + 𝑑2

𝑢, then by using Theorem (4.2)         

we may deduce that ∃ a 𝛶5 ≥ 𝛶4 + 𝜏 so that 𝑥2(𝑡) ≥ 𝑚2,   ∀𝑡 ≥ 𝛶5 , where 𝑚2 <
𝜂𝑙 𝑚1+𝛼2

𝑢 𝑀3+𝑑2
𝑢

∈2
. Hence,  

 𝑥1(𝑡), 𝑥2(𝑡) ≥ 𝑚3,   ∀𝑡 ≥ 𝛶5 , 

where 𝑚3 < 𝑚∗ = 𝑚𝑖𝑛{𝑚1, 𝑚2}. 

       Using system (2)’s third equation, we obtain  

 𝑥̇3(𝑡) ≥ 𝑥3(𝑡)[𝑒1
𝑙 𝑚1𝛼1(1 − 𝑚𝑥3) + 𝑒2

𝑢𝛼2𝑚2 − 𝑑3
𝑢]. 

 If (𝑒1
𝑙 𝑚1𝛼1(1 − 𝑚𝑥3)) > 𝑒2

𝑢𝛼2𝑚2 − 𝑑3
𝑢, then we can select 𝑚4 so that 0 < 𝑚4 <

(𝑒1
𝑙 𝑚1𝛼1(1−𝑚𝑥3))+𝑒2

𝑢𝛼2𝑚2−𝑑3
𝑢

𝑑3
𝑢 . If 

𝑥3(𝛶5) ≥ 𝑚4, then 𝑥3(𝑡) ≥ 𝑚4,   ∀𝑡 ≥ 𝛶5 . If 𝑥3(𝛶5) < 𝑚4 and suppose 𝜇2 = 𝑥3(𝛶5 )[𝑒1
𝑙 𝑚1𝛼1(1 − 𝑚𝑥3) + 𝑒2

𝑢 𝛼2𝑚2 −
𝑑3

𝑢] > 0, then ∃ an ∈3> 0 such that 𝑥3(𝑡) < 𝑚4 and 𝑥̇3(𝑡) > 𝜇2 > 0,    ∀𝑡 ∈ [𝛶5 , 𝛶5 +∈3). Thus, ∃ a 𝛶6 > 𝛶5 > 0 such 

that 𝛶(𝑡) ≥ 𝑚4    ∀𝑡 > 𝛶6 . After considering the above analysis, we establish that ∃ a 𝛶6 > 0, ensuring that each 

solution of system (1) satisfying initial conditions (2) eventually enters and remains in the area  

 𝛺 = {(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))|𝑚 ≤ 𝑥1(𝑡) ≤ 𝐾, 𝑚 ≤ 𝑥2(𝑡) ≤ 𝐾, 𝑚 ≤ 𝑥3(𝑡) ≤ 𝐾},              ∀𝑡 > 𝛶6 , 

       where 𝑚 = 𝑚𝑖𝑛{𝑚3, 𝑚4} and 𝐾 = 𝑚𝑎𝑥{𝐾3, 𝐾4 }.  

4. Numerical simulation 

This section numerically simulates various properties of the nonautonomous model (1), like periodic oscillation, 

bifurcation, chaos, and effect of prey refuge coefficient 𝑚. The system’s time-dependent parameters vary periodically 

as a sine wave function.   

 𝑟(𝑡) = 𝑟 (1 + 𝜚1𝑠𝑖𝑛 (
2𝜋𝑡

365
)) , 𝛼1(𝑡) = 𝛼1 (1 + 𝜚2𝑠𝑖𝑛 (

2𝜋𝑡

365
)) , 𝛼2(𝑡) = 𝛼2 (1 + 𝜚3𝑠𝑖𝑛 (

2𝜋𝑡

365
)) 
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 𝜂(𝑡) = 𝜂 (1 + 𝜚4𝑠𝑖𝑛 (
2𝜋𝑡

365
)) , 𝑒1(𝑡) = 𝑒1 (1 + 𝜚5𝑠𝑖𝑛 (

2𝜋𝑡

365
)) , 𝑒2(𝑡) = 𝑒2 (1 + 𝜚6𝑠𝑖𝑛 (

2𝜋𝑡

365
)), 

 𝑚(𝑡) = 𝑚 (1 + 𝜚7𝑠𝑖𝑛 (
2𝜋𝑡

365
)) , 𝑑1(𝑡) = 𝑑1 (1 + 𝜚8𝑠𝑖𝑛 (

2𝜋𝑡

365
)) , 𝑑2(𝑡) = 𝑑2 (1 + 𝜚9𝑠𝑖𝑛 (

2𝜋𝑡

365
)), 

 𝑑3(𝑡) = 𝑑3 (1 + 𝜚10𝑠𝑖𝑛 (
2𝜋𝑡

365
)),                                                (11) 

𝑟 = 5.5, 𝜂 = 0.2, 𝛼1 = 0.55, 𝛼2 = 0.4, 𝑒1 = 0.8, 𝑒2 = 0.2, 𝑑1 = 0.29, 𝑑2 = 0.55, 𝑑3 = 0.21, 𝑚 = 0.1, 𝜚1 = 0.1, 

     𝜚2 = 0.4, 𝜚3 = 0.52, 𝜚4 = 0.052, 𝜚5 = 0.66, 𝜚6 = 0.1, 𝜚7 = 0.1, 𝜚8 = 0.1, 𝜚9 = 0.1, 𝜚10 = 0.1.               (12)                                                       

    The Fig. (1) unveils the simulation results of the nonautonomous system (2) showing the positive periodic 

oscillations around endemic equilibrium for the parameter set (12) and incubation delay 𝜏 = 0.46. While we Increase 

the incubation delay, the system becomes unstable, crossing the critical value of incubation delay 𝜏 = 0.564965 and 

exhibits bifurcation for 𝜏 = 0.564965 showing in the Fig. (2). Finally, Fig. (3) shows the behavior of endemic 

equilibrium for parameter set (12), incubation delay 𝜏 = 0.46, and different values of the prey refuge parameter 𝑚. 

The figure shows that the system shows periodic oscillation for 𝑚 = 0.1, becomes unstable and shows bifurcation for 

𝑚 = 0.2, and becomes chaotic for 𝑚 = 0.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 1: Positive periodic solutions of system (1) the parameter set (12) and incubation delay τ = 0.46 
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Figure 2: Solution trajectories of the nonautonomous system (2) at τ = 0.97 for the parameter set (12) showing three different 

showing bifurcation  

  

 

 

 

 

 

 

 

 

 

 

 

 

             

 



 

46 

 

 

 

 

 

 

 

 

 

 

                                        

 
        

Figure 3: Behavior of the system (1) for  τ = 0.46 and for different values of prey refuge coefficients m=0.1, m=0.2, m=0.8 for 

the parameter set (12). 

5. Conclusions 

 The present research paper proposed a three-compartment prey-predator model with incubation delay of infection 

in prey and healthy prey refuge. The author analyses the system mathematically and establishes the solution’s 

existence, boundedness, and permanence. Further, the author simulates the system and reveals that the system is 

periodically stable for the incubation delay 𝜏 = 0.46 and shows bifurcation for incubation delay 𝜏 = 0.97. Hence, the 

system is unstable for all diseases with a considerable incubation delay. Again, simulating the system for different 

values of prey refuge results in the increasing prey refuge parameter; the system loses its stability and leads to chaos. 

Thus, the system is stable when the prey refuges the predation at a moderate value. 
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